@ai-on-browser/data-analysis-models
    Preparing search index...

    Class RLEnvironmentBase

    Base class for reinforcement learning environment

    Hierarchy (View Summary)

    Index

    Constructors

    Properties

    _epoch: number
    _rewardReviver: (arg0: RLStepResult) => number

    Accessors

    • get epoch(): number

      Epoch

      Returns number

    • set rewardReviver(reviver: (arg0: RLStepResult) => number): void

      Reward reviver

      Parameters

      • reviver: (arg0: RLStepResult) => number

        Reward reviver function that returns modified reward value

      Returns void

    Methods

    • Reset environment.

      Returns void

    • Sample an action.

      Parameters

      • agent: any

        Agent

      Returns any[]

      Sampled action

    • Set new state.

      Parameters

      • state: any[]

        New state

      • agent: any

        Agent

      Returns void

    • Returns current state.

      Parameters

      • agent: any

        Agent

      Returns any[]

      Current state

    • Do action and returns new state.

      Parameters

      • action: any[]

        Actions to be performed by the agent

      • agent: any

        Agent

      Returns RLStepResult

      state, reward, done

    • Do actioin without changing environment and returns new state.

      Parameters

      • state: any[]

        Environment state

      • action: any[]

        Actions to be performed by the agent

      • agent: any

        Agent

      Returns RLStepResult

      state, reward, done