@ai-on-browser/data-analysis-models
    Preparing search index...

    Class BlackjackRLEnvironment

    Blackjack environment

    Hierarchy (View Summary)

    Index

    Constructors

    Properties

    _dealer_hands: any[]
    _deck: Deck
    _done: boolean
    _epoch: number
    _player_hands: any[]
    _reward: { bust: number; step: number; win: number }

    Accessors

    • get actions(): number[][]

      Returns number[][]

    • get epoch(): number

      Epoch

      Returns number

    • set reward(value: object): void

      Reward

      Parameters

      • value: object

        Reward object

      Returns void

    • get states(): (number[] | RLIntRange)[]

      Returns (number[] | RLIntRange)[]

    Methods

    • Parameters

      • hands: any

      Returns any[]

    • Reset environment.

      Returns any[]

    • Sample an action.

      Parameters

      • agent: any

        Agent

      Returns any[]

      Sampled action

    • Set new state.

      Parameters

      • state: any[]

        New state

      • agent: any

        Agent

      Returns void

    • Returns current state.

      Returns any[]

      Current state

    • Do action and returns new state.

      Parameters

      • action: any

        Actions to be performed by the agent

      Returns { done: boolean; reward: number; state: any[] }

      state, reward, done

    • Do actioin without changing environment and returns new state.

      Parameters

      • state: any[]

        Environment state

      • action: any[]

        Actions to be performed by the agent

      • agent: any

        Agent

      Returns { done: boolean; invalid?: boolean; reward: number; state: any[] }

      state, reward, done