@ai-on-browser/data-analysis-models
    Preparing search index...

    Class GridMazeRLEnvironment

    Grid world environment

    Hierarchy (View Summary)

    Index

    Constructors

    Properties

    __map: any
    _dim: number
    _epoch: number
    _max_step: number
    _points: any[]
    _position: any[]
    _reward: { fail: number; goal: number; step: number; wall: number }
    _rewardReviver: (arg0: RLStepResult) => number
    _size: number[]

    Accessors

    • get _action_move(): number[][]

      Returns number[][]

    • get actions(): number[][]

      Returns number[][]

    • get epoch(): number

      Epoch

      Returns number

    • get map(): any

      Returns any

    • set rewardReviver(reviver: (arg0: RLStepResult) => number): void

      Reward reviver

      Parameters

      • reviver: (arg0: RLStepResult) => number

        Reward reviver function that returns modified reward value

      Returns void

    • get size(): number[]

      Returns number[]

    Methods

    • Returns void

    • Returns void

    • Sample an action.

      Parameters

      • agent: any

        Agent

      Returns any[]

      Sampled action

    • Set new state.

      Parameters

      • state: any

        New state

      Returns void

    • Returns current state.

      Returns any[]

      Current state

    • Do action and returns new state.

      Parameters

      • action: any[]

        Actions to be performed by the agent

      • agent: any

        Agent

      Returns RLStepResult

      state, reward, done

    • Do actioin without changing environment and returns new state.

      Parameters

      • state: any

        Environment state

      • action: any

        Actions to be performed by the agent

      Returns RLStepResult

      state, reward, done