@ai-on-browser/data-analysis-models
    Preparing search index...

    eXtreme Gradient Boosting regression

    Hierarchy (View Summary)

    Index

    Constructors

    • Parameters

      • Optionalmaxdepth: number

        Maximum depth of tree

      • Optionalsrate: number

        Sampling rate

      • Optionallambda: number

        Regularization parameter

      • Optionallr: number

        Learning rate

      Returns XGBoost

    Properties

    _lambda: number
    _learning_rate: number
    _loss: Matrix<number[]>
    _maxd: number
    _r: any[]
    _srate: number
    _trees: any[]
    _x: number[][]
    _y: Matrix<number[]>

    Accessors

    • get size(): number

      Number of trees

      Returns number

    Methods

    • Parameters

      • n: any

      Returns number[]

    • Fit model.

      Returns void

    • Initialize model.

      Parameters

      • x: number[][]

        Training data

      • y: number[][]

        Target values

      Returns void

    • Returns predicted values.

      Parameters

      • x: number[][]

        Sample data

      Returns number[][]

      Predicted values