Element type
Number of columns of the matrix.
Dimension of the matrix.
Number of all elements in the matrix.
Number of rows of the matrix.
Sizes of the matrix.
Elements in the matrix.
Set all elements to their absolute values.
Add a value to the position.
Index of the row to add the value to
Index of the column to add the value to
Value to add
Old value
Take logical AND with a value to the position.
Index of the row to take a logical AND with
Index of the column to take a logical AND with
Value to take a logical AND
Old value
Returns maximum indexes along the axis.
Axis to be reduced
Argmax values
Returns minimum indexes along the axis.
Axis to be reduced
Argmin values
Returns a doubly stochastic matrix.
Doubly stochastic matrix
Returns a doubly stochastic matrix by Sinkhorn-Knopp algorithm.
Doubly stochastic matrix
Returns a bidiagonal matrix by Householder method.
Optional
return_uv: falseReturns orthogonal matrixes
Bidiagonal matrix, or Bidiagonal matrix and orthogonal matrixes
Take bitwise AND with a value to the position.
Index of the row to take a bitwise AND with
Index of the column to take a bitwise AND with
Value to take a bitwise AND
Old value
Set all elements to their bitwise NOT values.
Take bitwise OR with a value to the position.
Index of the row to take a bitwise OR with
Index of the column to take a bitwise OR with
Value to take a bitwise OR
Old value
Take bitwise XOR with a value to the position.
Index of the row to take a bitwise XOR with
Index of the column to take a bitwise XOR with
Value to take a bitwise XOR
Old value
Set all elements to their ceil values.
Returns a cholesky decomposition by Banachiewicz algorithm.
Cholesky decomposition matrix
Returns a cholesky decomposition by Crout algorithm.
Cholesky decomposition matrix
Returns a cholesky decomposition by Gaussian algorithm.
Cholesky decomposition matrix
Convoluted by a kernel.
Kernel matrix
Optional
normalize: booleanNormalize kernel or not
Returns a covariance matrix.
Optional
ddof: numberDelta Degrees of Freedom
Covariance matrix
Returns a determinant.
Determinant value
Divides the value at the position by a value.
Index of the row to divide the value by
Index of the column to divide the value by
Value to divide
Old value
Returns eigenvalues and eigenvectors.
Eigenvalues and eigenvectors. Eigenvectors correspond to each column of the matrix.
Returns the nearest eigenvalue and its eigenvector to the specified value.
Optional
ev: numberTarget value
Optional
maxIteration: numberMaximum iteration
Eigenvalue and eigenvector
Returns eigenvalues and eigenvectors.
Optional
maxIteration: numberMaximum iteration
Eigenvalues and eigenvectors. Eigenvectors correspond to each column of the matrix.
Returns the maximum eigenvalue and its eigenvector.
Optional
maxIteration: numberMaximum iteration
Maximum eigenvalue and its eigenvector
Returns the k highest eigenvalues and its eigenvectors.
Number of calculated eigenvalues
Optional
maxIteration: numberMaximum iteration
The k highest eigenvalues and its eigenvectors. Eigenvectors correspond to each column of the matrix.
Returns eigenvalues.
Eigenvalues
Returns eigenvalues by Bi-section.
Eigenvalues
Returns eigenvalues by LU decomposition.
Optional
maxIteration: numberMaximum iteration
Eigenvalues
Returns eigenvalues by QR decomposition.
Optional
maxIteration: numberMaximum iteration
Eigenvalues
Returns eigenvectors.
Eigenvectors. Eigenvectors correspond to each column of the matrix.
Returns this matrix is equals to the others.
Check tensor
Optional
tol: numberTolerance to be recognized as the same
true
if equal
Flip values along the axis.
Optional
axis: numberAxis to be flipped
Set all elements to their floored values.
Returns a hessenberg matrix.
Optional
k: numberNumber of iterations
Hessenberg matrix
Divides a value by the value at the position.
Index of the row whose value is to be divided
Index of the column whose value is to be divided
Value to be divided
Old value
Take a remainder divided a value by the value at the position.
Index of the row whose value is to be divided
Index of the column whose value is to be divided
Value to be divided
Old value
Returns if this is alternating matrix or not.
Optional
tol: numberTolerance within which sign-reversed values are recognized as the same
true
if this is alternating matrix
Returns if this is diagonal matrix or not.
Optional
tol: numberTolerance to be recognized as 0
true
if this is diagonal matrix
Returns if this is hermitian matrix or not.
Optional
tol: numberTolerance to be recognized as the same
true
if this is hermitian matrix
Returns if this is identity matrix or not.
Optional
tol: numberTolerance to be recognized as 0 or 1
true
if this is identity matrix
Returns if this is lower triangular matrix or not.
Optional
tol: numberTolerance to be recognized as 0
true
if this is lower triangular matrix
Returns if this is nilpotent matrix or not.
Optional
tol: numberTolerance to be recognized as 0
true
if this is nilpotent matrix
Returns if this is normal matrix or not.
Optional
tol: numberTolerance to be recognized as the same
true
if this is normal matrix
Returns if this is orthogonal matrix or not.
Optional
tol: numberTolerance to be recognized as 0 or 1
true
if this is orthogonal matrix
Returns if this is regular matrix or not.
Optional
tol: numberTolerance to recognize the determinant as 0
true
if this is regular matrix
Returns if this is skew-hermitian matrix or not.
Optional
tol: numberTolerance within which sign-reversed values are recognized as the same
true
if this is skew-hermitian matrix
Returns if this is square matrix or not.
true
if this is square matrix
Returns if this is symmetric matrix or not.
Optional
tol: numberTolerance to be recognized as the same
true
if this is symmetric matrix
Returns if this is triangular matrix or not.
Optional
tol: numberTolerance to be recognized as 0
true
if this is triangular matrix
Subtract the value at the position from a value.
Index of the row whose value is to be subtracted
Index of the column whose value is to be subtracted
Value to be subtracted
Old value
Returns if this is unitary matrix or not.
Optional
tol: numberTolerance to be recognized as 0 or 1
true
if this is unitary matrix
Returns if this is upper triangular matrix or not.
Optional
tol: numberTolerance to be recognized as 0
true
if this is upper triangular matrix
Returns if this is zero matrix or not.
Optional
tol: numberTolerance to be recognized as 0
true
if this is zero matrix
Set all elements to their left shift values.
Shift amount
Returns maximum value of all element.
Maximum value
Returns maximum values along the axis.
Axis to be reduced
Maximum values
Returns maximum values along the axis.
Axis to be reduced. If negative, returns the maximum value of the all element.
Maximum values
Returns mean of all element.
Mean value
Returns means along the axis.
Axis to be reduced
Mean values
Returns means along the axis.
Axis to be reduced. If negative, returns a mean value of the all element.
Mean values
Returns median of all element.
Median value
Returns medians along the axis.
Axis to be reduced
Median values
Returns medians along the axis.
Axis to be reduced. If negative, returns a median of the all element.
Median values
Returns minimum value of all element.
Minimum value
Returns minimum values along the axis.
Axis to be reduced
Minimum values
Returns minimum values along the axis.
Axis to be reduced. If negative, returns the minimum value of the all element.
Minimum values
Take a remainder divided the value at the position by a value.
Index of the row to divide the value by
Index of the column to divide the value by
Value to divide
Old value
Returns a modified cholosky decomposition.
Cholesky decomposition matrix and diagonal matrix
Multiplies a value to the position.
Index of the row to multiply the value by
Index of the column to multiply the value by
Value to multiply
Old value
Multiply all elements by -1 in-place.
Returns a p-norm.
Optional
p: numberp-norm
Entry-wise norm
Returns a entry-wise norm
Optional
p: numberp-norm
Entry-wise norm
Returns frobenius norm.
Frobenius norm
Returns induced norm.
Optional
p: numberp-norm
Induced norm
Returns max norm.
Max norm
Returns nuclear norm.
Nuclear norm
Returns schatten norm.
Optional
p: numberp-norm
Schatten norm
Returns spectral norm.
Spectral norm
Set all elements to their logical NOT values.
Take logical OR with a value to the position.
Index of the row to take a logical OR with
Index of the column to take a logical OR with
Value to take a logical OR
Old value
Returns a power of this matrix.
Power exponent value
Powered matrix
Returns producted value of all element.
Producted value
Returns producted values along the axis.
Axis to be reduced
Producted values
Returns producted values along the axis.
Axis to be reduced. If negative, returns a producted value of the all element.
Producted values
Returns a Moore–Penrose inverse matrix by Ben-Israel and Cohen iterative method.
Moore–Penrose inverse matrix
Returns a Moore–Penrose inverse matrix by QR decomposition.
Moore–Penrose inverse matrix
Returns a Moore–Penrose inverse matrix by SVD decomposition.
Moore–Penrose inverse matrix
Returns quantile value of all element.
Partition rate
Quantile value
Returns quantile values along the axis.
Partition rate
Axis to be reduced
Quantile values
Returns quantile values along the axis.
Partition rate
Axis to be reduced. If negative, returns the quantile value of the all element.
Quantile values
Returns a rank of this matrix.
Optional
tol: numberTolerance to be recognized as the same
Rank of this matrix
Calculate reduced row echelon form in-place.
Optional
tol: numberTolerance to be recognized as 0
Remove specified indexes.
Remove index
Optional
axis: numberAxis to be removed
Repeat the elements n times along the axis this.
Repeated count
Optional
axis: numberAxis to be repeated
No return
Repeat the elements n times along the axis this.
Repeated counts for each axis
No return
Reshape this.
New row size
New column size
Reshape this.
New sizes for each dimension
Set all elements to their rounded values.
Shuffle values along the axis.
Optional
axis: numberAxis to be shuffled
Original index.
Set all elements to their right shift values.
Shift amount
Returns the maximum singular value.
Optional
maxIteration: numberMaximum iteration
Maximum singular value
Returns singular values.
Singular values
Sort values along the axis.
Optional
axis: numberAxis to be sorted
Original index.
Returns a spectral radius.
Spectral radius
Returns standard deviation of all element.
Standard deviation value
Returns standard deviations along the axis.
Axis to be reduced
Optional
ddof: numberDelta Degrees of Freedom
Standard deviation values
Returns standard deviations along the axis.
Axis to be reduced. If negative, returns a standard deviation of the all element.
Optional
ddof: numberDelta Degrees of Freedom
Standard deviation values
Subtract a value from the value at the position.
Index of the row to subtract the value to
Index of the column to subtract the value to
Value to subtract
Old value
Returns summation value of all element.
Summation value
Returns summation values along the axis.
Axis to be reduced
Summation values
Returns summation values along the axis.
Axis to be reduced. If negative, returns a summation value of the all element.
Summation values
Swap the index a and b along the axis.
First index
Second index
Optional
axis: numberAxis to be swapped
Returns a string represented this matrix.
String represented this matrix
Returns a trace.
Trace value
Returns a tridiagonal matrix.
Optional
return_u: falseReturns orthogonal matrix
Tridiagonal matrix, or Tridiagonal matrix and orthogonal matrix
Returns a tridiagonal matrix.
Optional
k: numberNumber of iterations
Tridiagonal matrix
Make it unique in the specified axis.
Optional
axis: numberAxis to be uniqued
Optional
tol: numberTolerance to be recognized as the same
Selected indexes
Set all elements to their unsigned right shift values.
Shift amount
Returns variance of all element.
Variance value
Returns variances along the axis.
Axis to be reduced.
Optional
ddof: numberDelta Degrees of Freedom
Variance values
Returns variances along the axis.
Axis to be reduced. If negative, returns a variance of the all element.
Optional
ddof: numberDelta Degrees of Freedom
Variance values
Static
addStatic
andStatic
bitandStatic
bitorStatic
bitxorStatic
concatStatic
diagStatic
divStatic
eyeReturns a identity matrix.
Number of rows
Number of columns
Optional
init: numberDiagonal values
Identity matrix
Returns a identity matrix.
Sizes for each dimension
Optional
init: numberDiagonal values
Identity matrix
Static
fromStatic
mapStatic
modStatic
multStatic
onesStatic
orStatic
randintReturns a matrix initialized uniform random integer values.
Number of rows
Number of columns
Optional
min: numberMinimum value of the Matrix (include)
Optional
max: numberMaximum value of the Matrix (include)
Matrix initialized uniform random values
Returns a matrix initialized uniform random integer values.
Sizes for each dimension
Optional
min: numberMinimum value of the Matrix (include)
Optional
max: numberMaximum value of the Matrix (include)
Matrix initialized uniform random values
Static
randnReturns a matrix initialized normal random values.
Number of rows
Number of columns
Optional
myu: number | number[]Mean value(s) of each columns
Optional
sigma: number | number[][]Variance value or covariance matrix of each columns
Matrix initialized normal random values
Returns a matrix initialized normal random values.
Sizes for each dimension
Optional
myu: number | number[]Mean value(s) of each columns
Optional
sigma: number | number[][]Variance value or covariance matrix of each columns
Matrix initialized normal random values
Static
randomReturns a matrix initialized uniform random values.
Number of rows
Number of columns
Optional
min: numberMinimum value of the Matrix (include)
Optional
max: numberMaximum value of the Matrix (exclude)
Matrix initialized uniform random values
Returns a matrix initialized uniform random values.
Sizes for each dimension
Optional
min: numberMinimum value of the Matrix (include)
Optional
max: numberMaximum value of the Matrix (exclude)
Matrix initialized uniform random values
Static
repeatStatic
resizeStatic
subStatic
zeros
Matrix class