Constructors
constructor
- new DQNAgent(
env: RLEnvironmentBase,
resolution: number,
layers: LayerObject[],
optimizer: string,
): DQNAgent
Properties
_env
_net
_net: DQN
Accessors
method
- set method(value: "DQN" | "DDQN"): void
Returns void
Methods
get_action
- get_action(state: any[], greedy_rate?: number): any[]
Parameters
- state: any[]
Optional
greedy_rate: number
Returns any[]
Action
get_score
- get_score(): number[][][]
Returns number[][][]
Score values
terminate
- terminate(): void
Returns void
update
- update(
action: any[],
state: any[],
next_state: any[],
reward: number,
done: boolean,
learning_rate: number,
batch: number,
): number Parameters
- action: any[]
- state: any[]
- next_state: any[]
- reward: number
- done: boolean
- learning_rate: number
- batch: number
Returns number
Loss value
Deep Q-Network agent