Continuous hidden Markov model

Hierarchy

  • HMMBase
    • ContinuousHMM

Constructors

  • Parameters

    • n: number

      Number of states

    Returns ContinuousHMM

Properties

_a: Matrix
_c: Matrix<T>
_d: number
_k: number
_m: any[]
_n: number
_p: Matrix<T>
_s: any[]

Methods

  • Parameters

    • x: any
    • Optionalc: any
    • Optionalprob: boolean

    Returns Matrix[]

  • Parameters

    • o: any
    • t: any

    Returns Matrix<T>

  • Parameters

    • o: any
    • t: any
    • k: any

    Returns Matrix<T>

  • Parameters

    • x: any
    • Optionalscaled: boolean

    Returns (Matrix<T> | Matrix<T>[])[]

  • Parameters

    • alpha: any
    • beta: any

    Returns Matrix[]

  • Parameters

    • gamma: any
    • xi: any

    Returns void

  • Parameters

    • x: any
    • alpha: any
    • beta: any
    • c: any

    Returns any[][]

  • Returns best path of the datas.

    Parameters

    • data: number[][] | number[][][]

      Sample data

    Returns number[][]

    Predicted path

  • Fit model.

    Parameters

    • x: number[][] | number[][][]

      Training data

    • Optionalscaled: boolean

      Do scaled calculation or not

    Returns void

  • Returns generated values.

    Parameters

    • Optionaln: number

      Number of generated data

    • Optionallength: number

      Path length

    Returns number[][][]

    Generated values

  • Returns probability of the datas.

    Parameters

    • datas: number[][] | number[][][]

      Sample data

    Returns number[]

    Predicted values