@ai-on-browser/data-analysis-models
    Preparing search index...

    Class ContinuousHMM

    Continuous hidden Markov model

    Hierarchy

    • HMMBase
      • ContinuousHMM
    Index

    Constructors

    • Parameters

      • n: number

        Number of states

      Returns ContinuousHMM

    Properties

    _a: Matrix<number>
    _c: Matrix<T>
    _d: number
    _k: number
    _m: any[]
    _n: number
    _p: Matrix<T>
    _s: any[]

    Methods

    • Parameters

      • x: any
      • Optionalc: any
      • Optionalprob: boolean

      Returns Matrix<number>[]

    • Parameters

      • o: any
      • t: any

      Returns Matrix<T>

    • Parameters

      • o: any
      • t: any
      • k: any

      Returns Matrix<T>

    • Parameters

      • x: any
      • Optionalscaled: boolean

      Returns (Matrix<T> | Matrix<T>[])[]

    • Parameters

      • alpha: any
      • beta: any

      Returns Matrix<number>[]

    • Parameters

      • gamma: any
      • xi: any

      Returns void

    • Parameters

      • x: any
      • alpha: any
      • beta: any
      • c: any

      Returns any[][]

    • Returns best path of the datas.

      Parameters

      • data: number[][] | number[][][]

        Sample data

      Returns number[][]

      Predicted path

    • Fit model.

      Parameters

      • x: number[][] | number[][][]

        Training data

      • Optionalscaled: boolean

        Do scaled calculation or not

      Returns void

    • Returns generated values.

      Parameters

      • Optionaln: number

        Number of generated data

      • Optionallength: number

        Path length

      Returns number[][][]

      Generated values

    • Returns probability of the datas.

      Parameters

      • datas: number[][] | number[][][]

        Sample data

      Returns number[]

      Predicted values