@ai-on-browser/data-analysis-models
    Preparing search index...

    Conscience on-line learning

    Index

    Constructors

    Properties

    Methods

    Constructors

    • Parameters

      • c: number

        Number of clusters

      • Optionaleta: number

        Initial learning rate

      • Optionalkernel:
            | "gaussian"
            | "polynomial"
            | { name: "gaussian"; s?: number }
            | { d?: number; name: "polynomial" }
            | ((arg0: number[], arg1: number[]) => number)

        Kernel name

      Returns COLL

    Properties

    _c: number
    _datas: number[][]
    _eta: number
    _f: number[]
    _k: any[]
    _kernel: any
    _nk: any[]
    _nu: any[]
    _t: number
    _w: Matrix<T>

    Methods

    • Fit model once.

      Returns number

      Convergence criterion

    • Initialize model.

      Parameters

      • datas: number[][]

        Training data

      Returns void

    • Returns predicted categories.

      Returns number[]

      Predicted values