@ai-on-browser/data-analysis-models
    Preparing search index...

    Class WeightedKNN

    Weighted K-Nearest Neighbor

    Index

    Constructors

    Properties

    Methods

    Constructors

    • Parameters

      • k: number

        Number of neighbors

      • Optionalmetric:
            | "euclid"
            | "manhattan"
            | "chebyshev"
            | "minkowski"
            | ((arg0: number[], arg1: number[]) => number)

        Metric name

      • Optionalweight:
            | "gaussian"
            | "epanechnikov"
            | "rectangular"
            | "triangular"
            | "triweight"
            | "quartic"
            | "cosine"
            | "inversion"

        Weighting scheme name

      Returns WeightedKNN

    Properties

    _c: any[]
    _d: (a: any, b: any) => any
    _k: number
    _metric:
        | "euclid"
        | "manhattan"
        | "chebyshev"
        | "minkowski"
        | ((arg0: number[], arg1: number[]) => number)
    _w:
        | ((d: any) => number)
        | ((d: any) => 0 | 0.5)
        | ((d: any) => number)
        | ((d: any) => number)
        | ((d: any) => number)
        | ((d: any) => number)
        | ((d: any) => number)
        | ((d: any) => number)
    _weight:
        | "gaussian"
        | "epanechnikov"
        | "rectangular"
        | "triangular"
        | "triweight"
        | "quartic"
        | "cosine"
        | "inversion"
    _x: number[][]
    _y: any[]

    Methods

    • Fit model.

      Parameters

      • x: number[][]

        Training data

      • y: any[]

        Target values

      Returns void

    • Returns predicted categories.

      Parameters

      • data: number[][]

        Sample data

      Returns any[]

      Predicted values