@ai-on-browser/data-analysis-models
    Preparing search index...

    Class SemiSupervisedNaiveBayes

    Semi-supervised naive bayes

    Index

    Constructors

    • Parameters

      • Optionallambda: number

        Weight applied to the contribution of the unlabeled data

      Returns SemiSupervisedNaiveBayes

    Properties

    _alpha: number
    _classes: any[]
    _labeled_data: { i: any[]; w: any[] }
    _labels: any[]
    _lambda: number
    _prob_c: any[] | number[]
    _prob_wc: any[] | number[][]
    _unlabeled_data: { i: any[]; w: any[] }
    _vocabulary: any[]

    Methods

    • Fit model.

      Returns void

    • Initialize model.

      Parameters

      • datas: string[][]

        Training data

      • labels: any[]

        Target values

      Returns void

    • Returns predicted categories.

      Returns number

      Log likelihood value

    • Returns predicted categories.

      Parameters

      • datas: string[][]

        Sample data

      Returns any[]

      Predicted values

    • Returns predicted probabilities.

      Parameters

      • datas: string[][]

        Sample data

      Returns number[][]

      Predicted values