@ai-on-browser/data-analysis-models
    Preparing search index...

    RankNet

    Index

    Constructors

    • Parameters

      • layer_sizes: number[]

        Sizes of all layers

      • Optionalactivations: string | string[]

        Activation names

      • Optionalrate: number

        Learning rate

      Returns RankNet

    Properties

    _a: any[]
    _activations: string | string[]
    _b: any[]
    _layer_sizes: number[]
    _optimizer: { lr: number; params: {}; delta(key: any, value: any): any }
    _rate: number
    _w: any[]

    Methods

    • Parameters

      • x: any

      Returns any[][]

    • Parameters

      • sizes: any

      Returns void

    • Fit model.

      Parameters

      • x1: number[][]

        Training data 1

      • x2: number[][]

        Training data 2

      • comp: (-1 | 0 | 1)[]

        Sign of (data 1 rank - data 2 rank). If data 1 rank is bigger than data 2, corresponding value is 1.

      Returns number

      loss

    • Returns predicted values.

      Parameters

      • x: number[][]

        Sample data

      Returns number[]

      Predicted values