RankNet

Constructors

  • Parameters

    • layer_sizes: number[]

      Sizes of all layers

    • Optionalactivations: string | string[]

      Activation names

    • Optionalrate: number

      Learning rate

    Returns RankNet

Properties

_a: any[]
_activations: string | string[]
_b: any[]
_layer_sizes: number[]
_optimizer: { lr: number; params: {}; delta(key: any, value: any): any }
_rate: number
_w: any[]

Methods

  • Parameters

    • x: any

    Returns any[][]

  • Parameters

    • sizes: any

    Returns void

  • Fit model.

    Parameters

    • x1: number[][]

      Training data 1

    • x2: number[][]

      Training data 2

    • comp: (-1 | 0 | 1)[]

      Sign of (data 1 rank - data 2 rank). If data 1 rank is bigger than data 2, corresponding value is 1.

    Returns number

    loss

  • Returns predicted values.

    Parameters

    • x: number[][]

      Sample data

    Returns number[]

    Predicted values