@ai-on-browser/data-analysis-models
    Preparing search index...

    Recurrent neuralnetwork

    Index

    Constructors

    Properties

    Accessors

    Methods

    Constructors

    • Parameters

      • Optionalmethod: "rnn" | "lstm" | "gru"

        Method name

      • Optionalwindow: number

        Window size

      • Optionalunit: number

        Size of recurrent unit

      • Optionalout_size: number

        Output size

      • Optionaloptimizer: string

        Optimizer of the network

      Returns RNN

    Properties

    _epoch: number
    _layers: { type: string }[]
    _method: "rnn" | "lstm" | "gru"
    _window: number

    Accessors

    • get epoch(): number

      Epoch

      Returns number

    • get method(): "rnn" | "lstm" | "gru"

      Method

      Returns "rnn" | "lstm" | "gru"

    Methods

    • Fit model.

      Parameters

      • train_x: number[][]

        Training data

      • train_y: number[][]

        Target values

      • iteration: number

        Iteration count

      • rate: number

        Learning rate

      • batch: number

        Batch size

      Returns number

      Loss value

    • Returns predicted future values.

      Parameters

      • data: number[][]

        Sample data

      • k: number

        Prediction count

      Returns number[][]

      Predicted values