@ai-on-browser/data-analysis-models
    Preparing search index...

    PROjected CLUStering algorithm

    Index

    Constructors

    • Parameters

      • k: number

        Number of clusters

      • a: number

        Number to multiply the number of clusters for sample size

      • b: number

        Number to multiply the number of clusters for final set size

      • l: number

        Average dimensions

      • OptionalminDeviation: number

        Minimum deviation to check the medoid is bad

      Returns PROCLUS

    Properties

    _a: number
    _b: number
    _bestObjective: number
    _clusters: any[][]
    _d: (a: any, b: any) => number
    _D: any[][]
    _dists: any[]
    _k: number
    _l: number
    _m: number[]
    _mbest: any
    _mcurrent: any
    _minDeviation: number
    _x: number[][]

    Methods

    • Parameters

      • m: any
      • D: any

      Returns any[][]

    • Parameters

      • m: any
      • L: any

      Returns any[][]

    • Parameters

      • n: any
      • k: any

      Returns number[]

    • Fit model.

      Returns void

    • Initialize model.

      Parameters

      • datas: number[][]

        Training data

      Returns void

    • Returns a list of the data predicted as outliers or not.

      Returns boolean[]

      Predicted values

    • Returns predicted categories.

      Returns number[]

      Predicted values