Median agglomerative clustering

Hierarchy

  • AgglomerativeClustering
    • MedianAgglomerativeClustering

Constructors

  • Parameters

    • Optionalmetric:
          | "euclid"
          | "manhattan"
          | "chebyshev"
          | (arg0: number[], arg1: number[]) => number

      Metric name

    Returns MedianAgglomerativeClustering

Properties

_d: (a: any, b: any) => any
_metric:
    | "euclid"
    | "manhattan"
    | "chebyshev"
    | (arg0: number[], arg1: number[]) => number
_root: { children: any[]; distance: any; leafs: any; size: any }

Methods

  • Parameters

    • ala: any
    • alb: any
    • bt: any
    • gm: any

    Returns (ka: any, kb: any, ab: any) => number

  • Parameters

    • d: any

    Returns number[]

  • Returns a distance between two nodes.

    Parameters

    • c1: AgglomerativeClusterNode

      Node

    • c2: AgglomerativeClusterNode

      Node

    Returns number

    Distance

  • Fit model parameters.

    Parameters

    • points: number[][]

      Training data

    Returns void

  • Returns the specified number of clusters.

    Parameters

    • number: number

      Number of clusters

    Returns AgglomerativeClusterNode[]

    Cluster nodes

  • Returns predicted categories.

    Parameters

    • k: number

      Number of clusters

    Returns number[]

    Predicted values

  • Returns new distance.

    Parameters

    • ca: number

      Number of datas in a merging node A

    • cb: number

      Number of datas in a merging node B

    • ck: number

      Number of datas in a current node

    • ka: number

      Distance between node A and current node

    • kb: number

      Distance between node B and current node

    • ab: number

      Distance between node A and node B

    Returns number

    New distance between current node and merged node