@ai-on-browser/data-analysis-models
    Preparing search index...

    Class KNNAnomaly

    k-nearest neighbor anomaly detection

    Hierarchy

    • KNNBase
      • KNNAnomaly
    Index

    Constructors

    Properties

    Methods

    Constructors

    • Parameters

      • Optionalk: number

        Number of neighborhoods

      • Optionalmetric:
            | "euclid"
            | "manhattan"
            | "chebyshev"
            | "minkowski"
            | ((arg0: number[], arg1: number[]) => number)

        Metric name

      Returns KNNAnomaly

    Properties

    _c: any[]
    _d: (a: any, b: any) => any
    _k: number
    _metric:
        | "euclid"
        | "manhattan"
        | "chebyshev"
        | "minkowski"
        | ((arg0: number[], arg1: number[]) => number)
    _p: any[]

    Methods

    • Add a data.

      Parameters

      • point: number[]

        Training data

      • Optionalcategory: any

        Target value

      Returns void

    • Parameters

      • data: any

      Returns any[]

    • Add a data.

      Parameters

      • point: number[]

        Training data

      Returns void

    • Add datas.

      Parameters

      • datas: number[][]

        Training data

      Returns void

    • Returns anomaly degrees.

      Parameters

      • datas: number[][]

        Sample data

      Returns number[]

      Predicted values