@ai-on-browser/data-analysis-models
    Preparing search index...

    Kernel Density Estimation Outlier Score

    Index

    Constructors

    Properties

    Methods

    Constructors

    • Parameters

      • kmin: number

        Minimum number of neighborhoods

      • kmax: number

        Maximum number of neighborhoods

      • Optionalkernel:
            | "gaussian"
            | "epanechnikov"
            | { name: "gaussian" }
            | { name: "epanechnikov" }
            | ((arg0: number, arg1: number, arg2: number) => number)

        Kernel name

      Returns KDEOS

    Properties

    _e: number
    _kernel: any
    _kmax: number
    _kmin: number
    _phi: number

    Methods

    • Parameters

      • x: any

      Returns number

    • Parameters

      • a: any
      • b: any

      Returns number

    • Returns anomaly degrees.

      Parameters

      • datas: number[][]

        Training data

      Returns number[]

      Predicted values