@ai-on-browser/data-analysis-models
    Preparing search index...

    Iterative Self-Organizing Data Analysis Technique

    Index

    Constructors

    • Parameters

      • init_k: number

        Initial cluster count

      • min_k: number

        Minimum cluster count

      • max_k: number

        Maximum cluster count

      • min_n: number

        Minimum cluster size

      • split_std: number

        Standard deviation as splid threshold

      • merge_dist: number

        Merge distance

      Returns ISODATA

    Properties

    _centroids: any[]
    _init_k: number
    _max_k: number
    _merge_distance: number
    _min_k: number
    _min_n: number
    _split_sd: number

    Accessors

    • get centroids(): number[][]

      Centroids

      Returns number[][]

    • get size(): number

      Number of clusters

      Returns number

    Methods

    • Parameters

      • datas: any

      Returns void

    • Parameters

      • a: any
      • b: any

      Returns number

    • Parameters

      • data: any

      Returns void

    • Parameters

      • datas: any

      Returns void

    • Parameters

      • datas: any

      Returns void

    • Fit model.

      Parameters

      • data: number[][]

        Training data

      Returns void

    • Initialize model.

      Parameters

      • data: number[][]

        Training data

      Returns void

    • Returns predicted categories.

      Parameters

      • datas: number[][]

        Sample data

      Returns number[]

      Predicted values