Iterative Self-Organizing Data Analysis Technique

Constructors

  • Parameters

    • init_k: number

      Initial cluster count

    • min_k: number

      Minimum cluster count

    • max_k: number

      Maximum cluster count

    • min_n: number

      Minimum cluster size

    • split_std: number

      Standard deviation as splid threshold

    • merge_dist: number

      Merge distance

    Returns ISODATA

Properties

_centroids: any[]
_init_k: number
_max_k: number
_merge_distance: number
_min_k: number
_min_n: number
_split_sd: number

Accessors

  • get centroids(): number[][]
  • Centroids

    Returns number[][]

  • get size(): number
  • Number of clusters

    Returns number

Methods

  • Parameters

    • datas: any

    Returns void

  • Parameters

    • a: any
    • b: any

    Returns number

  • Parameters

    • data: any

    Returns void

  • Parameters

    • datas: any

    Returns void

  • Parameters

    • datas: any

    Returns void

  • Fit model.

    Parameters

    • data: number[][]

      Training data

    Returns void

  • Initialize model.

    Parameters

    • data: number[][]

      Training data

    Returns void

  • Returns predicted categories.

    Parameters

    • datas: number[][]

      Sample data

    Returns number[]

    Predicted values