@ai-on-browser/data-analysis-models
    Preparing search index...

    Implicit online Learning with Kernels

    Hierarchy (View Summary)

    Index

    Constructors

    Properties

    Methods

    Constructors

    • Parameters

      • Optionaleta: number

        Learning rate

      • Optionallambda: number

        Regularization constant

      • Optionalc: number

        Penalty imposed on point prediction violations.

      • Optionalkernel:
            | "gaussian"
            | "polynomial"
            | { name: "gaussian"; s?: number }
            | { d?: number; name: "polynomial" }
            | ((arg0: number[], arg1: number[]) => number)

        Kernel name

      • Optionalloss: "hinge" | "square" | "logistic"

        Loss type name

      Returns ILK

    Properties

    _a: any[]
    _c: number
    _eta: number
    _kernel: any
    _lambda: number
    _loss: (f: any, k: any, y: any) => number
    _rho: number
    _sv: any[]

    Methods

    • Fit model.

      Parameters

      • x: number[][]

        Training data

      • y: (-1 | 1)[]

        Target values

      Returns void

    • Returns predicted values.

      Parameters

      • data: number[][]

        Sample data

      Returns (-1 | 1)[]

      Predicted values

    • Update model parameters with one data.

      Parameters

      • x: number[]

        Training data

      • y: -1 | 1

        Target value

      Returns void