@ai-on-browser/data-analysis-models
    Preparing search index...

    Hierarchical Density-based spatial clustering of applications with noise

    Index

    Constructors

    Properties

    Accessors

    Methods

    Constructors

    • Parameters

      • OptionalminClusterSize: number

        Minimum number of clusters to be recognized as a cluster

      • OptionalminPts: number

        Number of neighborhood with core distance

      • Optionalmetric:
            | "euclid"
            | "manhattan"
            | "chebyshev"
            | ((arg0: number[], arg1: number[]) => number)

        Metric name

      Returns HDBSCAN

    Properties

    _d: (a: any, b: any) => any
    _lastResult: any[]
    _metric:
        | "euclid"
        | "manhattan"
        | "chebyshev"
        | ((arg0: number[], arg1: number[]) => number)
    _minClusterSize: number
    _minPts: number

    Accessors

    • get size(): number

      Number of clusters of last predicted

      Returns number

    Methods

    • Returns predicted categories.

      Parameters

      • datas: number[][]

        Training data

      Returns number[]

      Predicted values