@ai-on-browser/data-analysis-models
    Preparing search index...

    Generative adversarial networks

    Index

    Constructors

    • Parameters

      • noise_dim: number

        Number of noise dimension

      • g_hidden: LayerObject[]

        Layers of generator

      • d_hidden: LayerObject[]

        Layers of discriminator

      • g_opt: string

        Optimizer of the generator network

      • d_opt: string

        Optimizer of the discriminator network

      • class_size: number

        Class size for conditional type

      • type: "" | "conditional"

        Type name

      Returns GAN

    Properties

    _discriminator: NeuralNetwork
    _epoch: number
    _g_opt: string
    _generator: NeuralNetwork
    _generatorNetLeyers: { name: string; type: string }[]
    _noise_dim: number
    _type: "" | "conditional"

    Accessors

    • get epoch(): number

      Epoch

      Returns number

    Methods

    • Fit model.

      Parameters

      • x: number[][]

        Training data

      • y: number[][]

        Conditional values

      • step: number

        Iteration count

      • gen_rate: number

        Learning rate for generator

      • dis_rate: number

        Learning rate for discriminator

      • batch: number

        Batch size

      Returns { discriminatorLoss: number; generatorLoss: number }

      Loss value

    • Returns generated data from the model.

      Parameters

      • n: number

        Number of generated data

      • y: number[][]

        Conditional values

      Returns number[][]

      Generated values

    • Returns probabilities of the data is true.

      Parameters

      • x: number[][]

        Sample data

      • y: any

        Conditional values

      Returns number[][]

      Predicted values