Generative adversarial networks

Constructors

  • Parameters

    • noise_dim: number

      Number of noise dimension

    • g_hidden: LayerObject[]

      Layers of generator

    • d_hidden: LayerObject[]

      Layers of discriminator

    • g_opt: string

      Optimizer of the generator network

    • d_opt: string

      Optimizer of the discriminator network

    • class_size: number

      Class size for conditional type

    • type: "" | "conditional"

      Type name

    Returns GAN

Properties

_discriminator: NeuralNetwork
_epoch: number
_g_opt: string
_generator: NeuralNetwork
_generatorNetLeyers: { name: string; type: string }[]
_noise_dim: number
_type: "" | "conditional"

Accessors

  • get epoch(): number
  • Epoch

    Returns number

Methods

  • Fit model.

    Parameters

    • x: number[][]

      Training data

    • y: number[][]

      Conditional values

    • step: number

      Iteration count

    • gen_rate: number

      Learning rate for generator

    • dis_rate: number

      Learning rate for discriminator

    • batch: number

      Batch size

    Returns { discriminatorLoss: number; generatorLoss: number }

    Loss value

  • Returns generated data from the model.

    Parameters

    • n: number

      Number of generated data

    • y: number[][]

      Conditional values

    Returns number[][]

    Generated values

  • Returns probabilities of the data is true.

    Parameters

    • x: number[][]

      Sample data

    • y: any

      Conditional values

    Returns number[][]

    Predicted values