@ai-on-browser/data-analysis-models
    Preparing search index...

    Class CompleteLinkageAgglomerativeClustering

    Complete linkage agglomerative clustering

    Hierarchy

    • AgglomerativeClustering
      • CompleteLinkageAgglomerativeClustering
    Index

    Constructors

    • Parameters

      • Optionalmetric:
            | "euclid"
            | "manhattan"
            | "chebyshev"
            | ((arg0: number[], arg1: number[]) => number)

        Metric name

      Returns CompleteLinkageAgglomerativeClustering

    Properties

    _d: (a: any, b: any) => any
    _metric:
        | "euclid"
        | "manhattan"
        | "chebyshev"
        | ((arg0: number[], arg1: number[]) => number)
    _root: { children: any[]; distance: any; leafs: any[]; size: any }

    Methods

    • Parameters

      • ala: any
      • alb: any
      • bt: any
      • gm: any

      Returns (ka: any, kb: any, ab: any) => number

    • Parameters

      • d: any

      Returns number[]

    • Returns a distance between two nodes.

      Parameters

      • c1: AgglomerativeClusterNode

        Node

      • c2: AgglomerativeClusterNode

        Node

      Returns number

      Distance

    • Fit model parameters.

      Parameters

      • points: number[][]

        Training data

      Returns void

    • Returns the specified number of clusters.

      Parameters

      • number: number

        Number of clusters

      Returns AgglomerativeClusterNode[]

      Cluster nodes

    • Returns predicted categories.

      Parameters

      • k: number

        Number of clusters

      Returns number[]

      Predicted values

    • Returns new distance.

      Parameters

      • ca: number

        Number of datas in a merging node A

      • cb: number

        Number of datas in a merging node B

      • ck: number

        Number of datas in a current node

      • ka: number

        Distance between node A and current node

      • kb: number

        Distance between node B and current node

      • ab: number

        Distance between node A and node B

      Returns number

      New distance between current node and merged node