@ai-on-browser/data-analysis-models
    Preparing search index...

    Budgeted online Passive-Aggressive

    Index

    Constructors

    Properties

    Methods

    Constructors

    • Parameters

      • Optionalc: number

        Regularization parameter

      • Optionalb: number

        Budget size

      • Optionalversion: "simple" | "projecting" | "nn"

        Version

      • Optionalkernel:
            | "gaussian"
            | "polynomial"
            | { name: "gaussian"; s?: number }
            | { d?: number; name: "polynomial" }
            | ((arg0: number[], arg1: number[]) => number)

        Kernel name

      Returns BPA

    Properties

    _b: number
    _c: number
    _kernel: any
    _nn: number
    _sv: any[]
    _version: "simple" | "projecting" | "nn"

    Methods

    • Fit model.

      Parameters

      • x: number[][]

        Training data

      • y: (-1 | 1)[]

        Target values

      Returns void

    • Returns predicted values.

      Parameters

      • data: number[][]

        Sample data

      Returns (-1 | 1)[]

      Predicted values