@ai-on-browser/data-analysis-models
    Preparing search index...

    Bounded Online Gradient Descent

    Index

    Constructors

    • Parameters

      • Optionalb: number

        Maximum budget size

      • Optionaleta: number

        Stepsize

      • Optionallambda: number

        Regularization parameter

      • Optionalgamma: number

        Maximum coefficient

      • Optionalsampling: "uniform" | "nonuniform"

        Sampling approach

      • Optionalkernel:
            | "gaussian"
            | "polynomial"
            | { name: "gaussian"; s?: number }
            | { d?: number; name: "polynomial" }
            | ((arg0: number[], arg1: number[]) => number)

        Kernel name

      • Optionalloss: "zero_one" | "hinge"

        Loss type name

      Returns BOGD

    Properties

    _alpha: any[]
    _b: number
    _eta: number
    _gamma: number
    _gloss: (t: any, y: any) => -1 | 0
    _kernel: any
    _lambda: number
    _sampling: "uniform" | "nonuniform"
    _sv: any[]

    Methods

    • Fit model.

      Parameters

      • x: number[][]

        Training data

      • y: (-1 | 1)[]

        Target values

      Returns void

    • Returns predicted values.

      Parameters

      • data: number[][]

        Sample data

      Returns (-1 | 1)[]

      Predicted values